关于星空(中国)-星空(中国)广西运筹学会第一届第二次理事会议暨第二次学术交流会的通知

作者: 时间:2021-04-20 点击数:85

为了促进广西壮族自治区运筹学会会员的交流与合作,由星空网页版登录入口承办的“广西运筹学会第一届第二次理事会议暨第二次学术交流会”将于2021年4月24日(周六)上午在星空网页版登录入口金鸡岭校区勤正楼516室星空(中国)-星空(中国),本次会议主题为“最优化理论、算法及其应用的最新成果”,欢迎全校师生踊跃参加。

本次会议的报告安排具体如下:

时间

报告人

所在单位

报告题目

8:00-8:30



开幕式

8:45-9:10

唐国吉教授

广西民族大学

Generalized polynomial complementarity   problems over a polyhedral cone

9:10-9:35

唐春明教授

广西大学

A new restricted memory level bundle method   for constrained convex nonsmooth optimization

9:35-10:00

李姣芬教授

星空网页版登录入口

Efficient algorithms for solving condition   number-constrained matrix minimization problems

10:00-10:25

刘利斌副教授

南宁师范大学

A robust adaptive grid method for   singularly perturbed delay Volterra integro-differential equations

10:35-11:00

袁功林教授

广西大学

Applications of the projection technique   for two open problems

11:00-11:25

蒋宜蓉副教授

桂林理工大学

Uniqueness and Hyers-Ulam Stability of   Random Differential Variational Inequalities with Nonlocal Boundary Conditions

11:25-11:50

覃永辉副教授

星空网页版登录入口

Multidomain Legendre-Galerkin   Chebyshev-collocation method for one-dimensional evolution equations with   discontinuity

11:50-12:15

马国栋副教授

广西民族大学

A SSLE-type algorithm of quasi-strongly   sub-feasible directions for inequality constrained Minimax problems

12:15-12:30



闭幕式


具体报告信息如下:

报告(一)Generalized polynomial complementarity problems over a polyhedral cone

报告人:唐国吉教授

内容摘要:The goal of this paper is to investigate a new model, called generalized polynomial complementarity problems over a polyhedral cone and denoted by GPCPs, which is a natural extension of the polynomial complementarity problems and generalized tensor complementarity problems. Firstly, the nonemptiness and compactness of the solution set of GPCPs are proved, when the involved tensor in the leading term of the polynomial is an $ER^{K}$-tensor. Subsequently, under fairly mild assumptions, lower bounds of solution set via an equivalent form are obtained. Finally, a local error bound of the considered problem is derived. The results presented in this paper generalize and improve the corresponding those in the recent literature.

报告人简介:唐国吉,博士,广西民族大学教授,硕士生导师,广西数学会常务理事,广西运筹学学会常务理事,广西民族大学运筹学与控制论学科方向带头人,广西高校优秀中青年骨干教师培养工程人选,主持(含完成)国家自然科学基金项目2项、广西自然科学基金项目3项,第一完成人研究成果获广西科学技术奖(自然科学类)三等奖1项。

报告(二):Applications of the projection technique for two open problems

报告人:袁功林教授

内容摘要:There are two open problems for nonconvex functions under the weak Wolfe-Powell (WWP) line search technique in unconstrained optimization problems. The first one is the global convergence of the Polak-Ribi/`{e}re-Polyak (PRP) conjugate gradient algorithm and the second one is the global convergence of the BFGS (Broyden, Fletcher, Goldfarb, and Shanno) quasi-Newton method. Many scholars have proven that these two problems do not converge, even if an exact line search is used. Two circle counterexamples were proposed to generate the nonconvergence of the PRP algorithm for the nonconvex functions under the exact line search (see Powell, Lecture Notes in Math. 1066(1984) and Dai, SIAM J. Optim. 13(2003) in detail), which inspired us to define a new technique to jump out of the circle point and obtain the global convergence. Thus, a new PRP conjugate gradient algorithm is designed by the following steps. (i) The current point $x_k$ is defined, and a parabolic surface $P_k$ is designed; (ii) an assistant point $/kappa_k$ is defined by the PRP formula based on $x_k$; (iii) $/kappa_k$ is projected onto the parabolic surface $P_k$ to generate the next point $x_{k+1}$; (iv) the presented PRP conjugate gradient algorithm has the global convergence for nonconvex functions with the WWP line search; (v) a similar technique is used for the BFGS quasi-Newton method to get a new BFGS algorithm and establish its global convergence; and (vi) The numerical results show that the given algorithms are more competitive than those of other similar algorithms. And the well-known hydrologic engineering application problem called parameter estimation problem of nonlinear Muskingum model is also done by the proposed algorithms.

报告人简介:袁功林,广西大学教授,博导。主要从事优化理论与方法、非线性方程组、非光滑分析以及金融模型的优化方法等方面研究,主持国家自然科学基金项目2项,主持广西杰出青年自然科学基金项目1项、广西自然科学基金重点项目1项、中央引导地方科技发展基金项目1项、广西面上项目1项。广西十百千第二层次人选,广西特聘青年专家,广西高校卓越学者计划人选,广西高校优秀人才计划人选。以第一或通讯作者发表SCI收录论文50篇,如COAP、JOTA、JCAM等优化期刊发表多篇论文、Top 0.1%“热点论文”1篇、Top 1%“高被引论文”4篇、出版学术专著一部;获得广西科学技术二等奖1项、广西自然科学二等奖1项、广西教学成果二等奖1项。现任中国数学会理事、中国数学规划分会理事、广西数学会常务理事、广西运筹学会副理事长、广西高等教育学会数学专业委员会副理事长。

报告(三):A new restricted memory level bundle method for constrained convex nonsmooth optimization

报告人:唐春明教授

内容摘要:In this talk, a new restricted memory level bundle method for solving constrained convex nonsmooth optimization problems is proposed. To ensure convergence, the memory of our approach is restricted to at least two linearizations as well as a special linear function, while the traditional constrained bundle methods require at least four linearizations. Unusually, the new algorithm consists of outer loops and nested inner procedures, which can greatly facilitate the convergence analysis. In addition, a relaxed feasibility detection criterion is proposed, which may decrease the number of subproblems solving. Global convergence of the algorithm is established and an iteration complexity bound is derived. Finally, some preliminary numerical results show that the proposed method is efficient.

报告人简介:唐春明,广西大学数学与信息科学学院教授,博士,博士生导师,广西运筹学会副理事长、中国运筹学会理事。1998-2004年本、硕就读于广西大学,2008年博士毕业于上海大学,2014年到澳大利亚新南威尔士大学访学一年。目前主要研究非光滑优化方法和流形上的优化。主持国家自然科学基金项目3项,广西自然科学基金项目3项(含广西杰青1项)。作为主要参与者获广西自然科学奖二等奖2项。在《 European Journal of Operational Research》、《Numerical Algorithms》、《Computational Optimization and Applications》、《中国科学:数学》等重要刊物发表论文30余篇。

报告(四):Efficient algorithms for solving condition number-constrained matrix minimization problems

报告人:李姣芬教授

内容摘要:Well-conditioned matrices are often required in science and engineering, such as signal processing and finance. Problem to find the nearest positive definite matrix by explicitly imposing a constraint on the condition number are considered in this talk. A new algorithm based on geometric perspective is proposed for getting the required well-conditioned matrix. Based on these, a condition number constrained matrix minimization problem is further considered, where the constraints are imposed for avoiding degenerate solutions in which parameter matrices become rank deficient. An inexact version of alternating direction method with truly implementable inexactness criteria is proposed for solving this problem. Numerical experiments, including comparison with some existing methods, are performed to illustrate the efficiency of the proposed algorithms.

报告人简介:李姣芬,星空网页版登录入口,博士(后),教授。主要研究领域数值代数。主持在研或完成3项国家自然科学基金项目。2010年以来以第一作者在Numer. Linear Algebra Appl.、Comput. Optim. Appl.、Linear Algebra Appl.Linear Multilinear A.、《数学学报》等发表论文27篇,其中SCI收录17篇。研究成果获广西自然科学奖三等奖。

报告(五):A robust adaptive grid method for singularly perturbed delay Volterra integro-differential equations

报告人:刘利斌副教授

内容摘要:In this paper, we study a nonlinear first-order singularly perturbed Volterra integro-differential equation with delay. This equation is discretized by the backward Euler for differential part and the composite numerical quadrature formula for integral part for which both an a priori and an a posteriori error analysis in the maximum norm are derived.

报告人简介:南宁师范大学数学与统计学院副教授,广西千名青年骨干教师,主要研究方向为微分方程数值解法及其应用、智能算法及其应用以及分数阶微分方程数值解法。主持完成国家自然科学基金项目3项、广西自然科学基金项目2项,参与广西自然科学基金重点项目2项。在国内外学术期刊发表学术论文40多篇;获得省教学成果一等奖1项(排名第二)。

报告(六):Uniqueness and Hyers-Ulam Stability of Random Differential Variational Inequalities with Nonlocal Boundary Conditions

报告人:蒋宜蓉副教授

内容摘要:In this paper, we consider a new class of random differential variational inequalities (RDVIs) with nonlocal boundary conditions in Hilbert spaces. We apply the projection operator, Gronwall’s lemma and a result on the existence of a random differential inclusion to establish uniqueness and Hyers–Ulam stability results of the abstract inequality. As an illustrative application, the linear random differential complementarity systems and a price control model are investigated.

报告人简介:蒋宜蓉、博士、副教授,美国数学评论员,JOTA、TAIWAN J MATH、NUMER FUNC ANAL OPT杂志审稿人,研究方向:非线性分析、动态微分优化与变分不等式理论、算法及在工程中的应用。主持省级项目两项,发表SCI论文10余篇。

报告(七):Multidomain Legendre-Galerkin Chebyshev-collocation method for one-dimensional evolution equations with discontinuity

报告人:覃永辉副教授

报告人简介:覃永辉,博士,星空网页版登录入口副教授,硕士生导师。硕士和博士分别毕业广西民族大学应用数学和上海大学计算数学,分别师从刘晓冀教授学习广义逆理论与计算、马和平教授学习偏微分方程数值解法和谱方法;2016年12月至今任职星空网页版登录入口数学与计算科学学院。主持国家自然科学青年基金项目1项,参与国家自然科学基金项目3项;主持广西省部级自然基金项目2项;主持广西重点实验室开放课题项目2项;主持星空网页版登录入口校级教改项目1项。研究的兴趣:微分方程的谱元素法及其在电磁场计算 (Maxell’s方程)和交接面问题(Stefan问题)中的计算;矩阵广义逆的理论和计算。在《Applied Numerical Mathematics》,《Numerical Methods for Partial differential equations》,《数学学报》等国内外数学期刊上发表论文10余篇。

报告(八):A SSLE-type algorithm of quasi-strongly sub-feasible directions for inequality constrained Minimax problems

报告人:马国栋副教授

内容摘要:In this talk, we discuss the nonlinear minimax problems with inequality constraints. Based on the stationary conditions of the discussed problems, we propose a sequential systems of linear equations (SSLE)-type algorithm of quasi-strongly sub-feasible directions with an arbitrary initial iteration point. At each iteration, two systems of linear equations (SLEs) with a same uniformly nonsingular coeffcient matrix are solved. Under mild conditions, the proposed algorithm possesses global and strong convergence. Finally, some preliminary numerical experiments are reported.

报告人简介:马国栋,广西民族大学副教授,硕士生导师,广西运筹学会常务理事和广西数学学会理事。2015年6月上海大学运筹学与控制论专业毕业,并获理学博士学位,现主要从事最优化理论与算法的研究,主持广西自然科学基金项目2项、广西教育厅科研项目1项,参与国家自然科学基金项目和广西自然科学基金项目各2项,发表学术论文近20篇,被SCI收录9篇。 主持完成广西高等教育本科教学改革工程重点项目1项。获广西高等教育自治区级教学成果奖三等奖和优秀教师等荣誉。



上一篇:下一篇:

Copyright© 2018 All Rights Reserved. 星空网页版登录入口数学与计算科学学院