[1] Yongbo Liang, Zhencheng Chen*, Guiyong Liu, Mohamed Elgendi*. A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in China. Scientific data, doi:10.1038/sdata.2018.20 (2018).
[2] Yongbo Liang, Mohamed Elgendi*, Zhencheng Chen* & Rabab Ward. An optimal filter for short photoplethysmogram signals. Scientific data, 5, 180076, doi:10.1038/sdata.2018.76 (2018).
[3] Yongbo Liang, Zhencheng Chen*, Rabab Ward & Mohamed Elgendi*. Hypertension Assessment Using Photoplethysmography: A Risk Stratification Approach. Journal of Clinical Medicine, 8, doi:10.3390/jcm8010012 (2018).
[4] Yongbo Liang, Derek Abbott, Newton Howard, Kenneth Lim, Rabab Ward and Mohamed Elgendi*. How Effective Is Pulse Arrival Time for Evaluating Blood Pressure? Challenges and Recommendations from a Study Using the MIMIC Database. Journal of Clinical Medicine, 8, 1-14, doi:10.3390/jcm8030337 (2019).
[5] Yongbo Liang, Zhencheng Chen, Rabab Ward & Mohamed Elgendi*. Hypertension Assessment via ECG and PPG Signals: An Evaluation Using MIMIC Database. Diagnostics, 8, doi:10.3390/diagnostics8030065 (2018).
[6] Yongbo Liang, Zhencheng Chen, Rabab Ward & Mohamed Elgendi*. Photoplethysmography and Deep Learning: Enhancing Hypertension Risk Stratification. Biosensors, 8,doi:10.3390/bios8040101 (2018).
[7] Zhenyu Zheng, Zhencheng Chen*, Fangrong Hu, Jianming Zhu, Qunfeng Tang, Yongbo Liang*. An Automatic Diagnosis of Arrhythmias Using a Combination of CNN and LSTM Technology [J]. Electronics, 2020, 9(1): 1-15.
[8] Yang Zhang, Jianming Zhu, Yongbo Liang, Hongbo Chen, Shimin Yin and Zhencheng Chen*. Non-invasive blood glucose detection system based on conservation of energy method. Physiological measurement, 2017, 38: 325-342.
[9] Mohamed Elgendi, Richard Fletcher, Yongbo Liang, et al. The use of photoplethysmography for assessing hypertension [J]. npj Digital Medicine, 2019, 2(1):1-11. (综述文章)
[10] 周谭琪,梁永波,刘桂勇,谭少珍,陈真诚*. 基于 Relief 算法的心血管疾病辅助诊断研究. 生物医学工程学杂志 34, 535-542 (2017).
[11] 梁永波,陈真诚*,朱健铭,殷世民. 基于容积脉搏波的无创连续血压测量系统 [J]. 航天医学与医学工程, 2013, 26(1): 47-50.
[12] Cheng, Peng,Chen, Zhencheng*,Li, Quanzhong,Gong, Qiong,Zhu, Jianming,Liang, Yongbo*. Atrial Fibrillation Identification With PPG Signals Using a Combination of Time-Frequency Analysis and Deep Learning. IEEE Access 8, 172692-172706 (2020).
[13] Yongbo Liang, Shimin Yin, Qunfeng Tang, Zhenyu Zheng, Mohamed Elgendi* and Zhencheng Chen*. Deep Learning Algorithm Classifies Heartbeat Events Based on Electrocardiogram Signals. Frontiers in Physiology, 02 October 2020. Doi: 10.3389/fphys.2020.569050. (2020)
[14] Yongbo Liang, Ahmed Hussain, Derek Abbott, Carlo Menon, Rabab Ward and Mohamed Elgendi*. Impact of Data Transformation: An ECG Heartbeat Classification Approach. Frontiers in Digital Health, Dec 23, 2020 doi: 10.3389/fdgth.2020.610956 (2020)