1.B Feng, LB Huang, Y Liu. et al. A Transfer Learning Radiomics Nomogram for Preoperative Prediction of Borrmann Type IV Gastric Cancer From Primary Gastric Lymphoma. Front Oncol .2021,5(2)191-202. (已收录, SCI, 二区, IF = 6.244)
2.B Feng, Zhuangsheng Liu,Yu Liu,et al. Predicting lymphovascular
invasion in clinically node-negative breast cancer detected by abbreviated magnetic
resonance imaging: Transfer learning vs. radiomics. Front Oncol.2022.12:890659.(已收录, SCI, 二区, IF = 6.244)
3. X M Chen#, B Feng#, Y H Chen, et al. A CTbased deep learning model for subsolid pulmonary nodules to distinguish minimally invasive adenocarcinoma and invasive adenocarcinoma.Eur J Radiol.2021, 145 :110041.(已收录, SCI, 二区, IF = 3.528)
4. L B Huang#, B Feng#, Y Li, et al. Computed TomographyBased Radiomics Nomogram: Potential to Predict Local Recurrence of Gastric Cancer After Radical Resection. Front Oncol .2021,11:38362. (已收录, SCI, 二区, IF = 6.244)
5. B Feng, X M Chen, Y H Chen, et al. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas[J]. Eur Radiol, 2020. (已收录, SCI, 二区, IF = 7.03)
6. B Feng, X M Chen, Y H Chen, et al. Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule[J]. Eur J Radiol, 2020. (已收录, SCI, 三区, IF = 2.948)
7.B Feng, X M Chen, Y H Chen, et al. Differentiating minimally invasive and invasive adenocarcinomas in patients with solitary sub-solid pulmonary nodules with a radiomics nomogram[J]. Clinical Radiology, 2019, 74(7): 570.e1-570.e11. (SCI, 三区, IF = 2.082)
8. B Feng, Z L Yu , Z Gu, et al. Analysis
of fMRI data based on sparsity of source components in signal dictionary[J]. Neurocomputing, 2015, 156: 86-95. (SCI, 二区, IF = 3.317)